Name____

1) Solve: 5 - 3(2x - 1) = 6 - 2x

Start:	5 - 3(2x - 1) = 6 - 2x
Distribute:	5 - 6x + 3 = 6 - 2x
Collect terms:	8-6x=6-2x
Add 6 <i>x</i> :	8 = 6 + 4x
Subtract 6:	2 = 4x
Divide by 4:	$\frac{1}{2} = x$

2) Solve: $2x + 5(x - 7) \ge 3x + 4$

Start:	$2x + 5(x - 7) \ge 3x + 4$
Distribute:	$2x + 5x - 35 \ge 3x + 4$
Collect terms:	$7x - 35 \ge 3x + 4$
Subtract 3 <i>x</i> :	$4x - 35 \ge 4$
Add 35:	$4x \ge 39$
Divide by 4:	$x \ge \frac{39}{4}$

3) Factor: $x^2 + 5x - 24$

To factor a trinomial with a lead coefficient of 1, consider the following (see p. 68 in the Algebra Handbook available on www.mathguy.us).

$$(x + p) \cdot (x + q) = x^{2} + (p + q)x + (pq)$$

$$sign 1$$

$$sign 1$$

$$sign 2$$

$$coefficient$$
of x
$$sign 2$$

$$constant$$

For this problem, p + q = 5, and $p \cdot q = -24$.

Thinking about possibilities we conclude that pand q must be -3 and 8. Notice that the sign of the middle term goes with the larger of p and q.

Then, $x^2 + 5x - 24 = (x - 3)(x + 8)$

4) Factor: $a^2 - 7a + 10$

For this problem, p + q = -7, and $p \cdot q = 10$.

p and q must both be negative because the coefficient of a in the original expression is negative, but the constant term is positive.

Thinking about possibilities we conclude that p and q must be -2 and -5. Then,

$$a^2 - 7a + 10 = (a - 2)(a - 5)$$

5) Factor: $5x^2 - 6x + 1$

To factor a trinomial with a lead coefficient other than 1, consider the steps shown on p. 69 in the Algebra Handbook. *The AC Method works allows you to focus on a singular solution.*

Alternatively, the factored form must be: (mx + p)(nx + q). So, $(m \cdot n)$ is the coefficient of x^2 and $(p \cdot q)$ is the constant term. If there are not many possibilities for m, n, p, q, we can try various combinations of them to see if the correct coefficient of the x term results when multiplying (mx + p)(nx + q).

For this problem, $m \cdot n = 5$ and $p \cdot q = 1$.

Thinking through the possibilities with $5x^2 - 6x + 1$, we settle on:

$$5x^2 - 6x + 1 = (5x - 1)(x - 1)$$
.

6) Factor: $6x^2 + 7x - 3$

The lead coefficient is not 1, so let's use the AC Method with this problem. Note that the name of the method reflects the multiplication of a and c of $ax^2 + bx + c$ in the process:

Now, we want values that multiply to -18, and add to 7.

Thinking through the possibilities, we come up with 9 and -2. These become the coefficients of two middle terms that replace +7x.

 $6x^2 + 7x - 3 = 6x^2 + 9x - 2x - 3$

Next, group terms in pairs. Be careful to distribute the negative in the second pair:

 $(6x^2 + 9x) - (2x + 3)$

Factor each pair of terms separately and collect terms.

$$(6x2 + 9x) - (2x + 3) = 3x(2x + 3) - 1(2x + 3)$$
$$= (3x - 1)(2x + 3)$$

7) Factor: $4x^2 - 6x - 40$

First, factor out the greatest common factor: $4x^2 - 6x - 40 = 2(2x^2 - 3x - 20)$

The lead coefficient of the remaining trinomial is not 1, so let's use the AC Method with this problem.

$$2x^2 - 3x - 20$$

Now, we want values that multiply to -40, and add to -3.

Thinking through the possibilities, we come up with -8 and 5. These become the coefficients of two middle terms that replace -3x.

$$2(2x^2 - 3x - 20) = 2(2x^2 - 8x + 5x - 20)$$

Next, group terms in pairs:

 $2[(2x^2-8x)+(5x-20)]$

Factor each pair of terms separately and collect terms.

$$2[(2x^2 - 8x) + (5x - 20)] = 2[2x(x - 4) + 5(x - 4)]$$
$$= 2(2x + 5)(x - 4)$$

8) Multiply: $(x - 4)^2$

$$(x-4)^2 = (x-4)(x-4)$$

First: $x \cdot x = x^2$
Outside: $x \cdot (-4) = -4x$
Inside: $(-4) \cdot x = -4x$
Last: $(-4) \cdot (-4) = 16$

Now, add the resulting terms: $x^2 - 4x - 4x + 16 = x^2 - 8x + 16$

9) Multiply: $(7x + 2)^2$

$$(7x + 2)^2 = (7x + 2)(7x + 2)$$

First: $7x \cdot 7x = 49x^2$
Outside: $7x \cdot (2) = 14x$
Inside: $(2) \cdot 7x = 14x$
Last: $(2) \cdot (2) = 4$

Now, add the resulting terms: $49x^2 + 14x + 14x + 4 = 49x^2 + 28x + 4$

10) Solve by factoring: $2x^2 + 3x - 35 = 0$

The lead coefficient is not 1, so let's use the AC Method with this problem.

$$2x^2 + 3x - 35 = 0$$

-70

Now, we want values that multiply to -70, and add to 3.

Thinking through the possibilities, we come up with 10 and -7. These become the coefficients of two middle terms that replace +3x.

 $2x^2 + 3x - 35 = 2x^2 + 10x - 7x - 35$

Next, group terms in pairs. Be careful to distribute the negative in the second pair:

 $(2x^2 + 10x) - (7x + 35)$

Factor each pair of terms separately and collect terms.

$$(2x2 + 10x) - (7x + 35) = 2x(x + 5) - 7(x + 5)$$
$$= (2x - 7)(x + 5)$$

Finally, set each term equal to zero.

$$2x - 7 = 0 \qquad x + 5 = 0$$
$$2x = 7 \qquad x = -5$$
$$x = \frac{7}{2}$$

11) Solve by factoring: $x^2 - 28 = -3x$

First, get all terms on one side (preferably with a positive lead coefficient).

$$x^{2} - 28 = -3x$$
$$x^{2} + 3x - 28 = 0$$
$$(x + 7)(x - 4) = 0$$

Finally, set each term equal to zero.

$$x + 7 = 0$$
 $x - 4 = 0$
 $x = -7$ $x = 4$

Algebra Review

12) Solve: $5x^2 - 2x - 1 = 0$

(what if it doesn't factor; how can we solve a quadratic?)

Use the quadratic formula if the quadratic function is in the form $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In this problem, a = 5, b = -2, c = -1

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(-1)(5)}}{2(5)} = \frac{2 \pm \sqrt{4 + 20}}{10} = \frac{2 \pm \sqrt{24}}{10} = \frac{2 \pm \sqrt{4} \cdot \sqrt{6}}{10} = \frac{2 \pm 2\sqrt{6}}{10}$$
$$= \frac{2(1 \pm \sqrt{6})}{2 \cdot 5} = \frac{1 \pm \sqrt{6}}{5}$$

Note: It is possible to determine if a quadratic equation can be factored by evaluating the discriminant, which we identify with the Capital Greek letter delta, " Δ ". The discriminant is the portion of the quadratic formula that is under the radical: $\Delta = b^2 - 4ac$. Then,

- If Δ **IS** a perfect square (i.e., 0, 1, 4, 9, 16, 25, ...), the quadratic **CAN** be factored.
- If Δ **IS NOT** a perfect square, the quadratic **CANNOT** be factored.

This concept will be useful to the student countless times in their mathematical career.

13) Solve for x in terms of y:

3y + 2x = -4

We want to isolate *x* to determine what it is in terms of *y*.

Start:	3y + 2x = -4
Subtract 3y:	2x = -3y - 4
Divide by 2:	$x=-\frac{3}{2}y-2$

14) Solve for
$$(x, y)$$
:

$$\begin{cases}
3x - 5y = 8 \\
-3x + 2y = 1
\end{cases} \xrightarrow{(\cdot 1)} \xrightarrow{3x - 5y = 8} \\
-3x + 2y = 1 \xrightarrow{(\cdot 1)} (\cdot 1) \xrightarrow{+ -3x + 2y = 1} \\
-3y = 9 \\
y = -3
\end{cases} \xrightarrow{x = -\frac{7}{3}} \xrightarrow{x = -\frac{7}{3}}$$

The solution to this set of simultaneous equations, then, is $\left(-\frac{7}{3}, -3\right)$

15) Solve for (x, y): $\begin{cases} x + 2y = 3 \\ 2x + 3y = 3 \end{cases} \xrightarrow{(\cdot -2)} (\cdot -2) \xrightarrow{(-2x - 4y = -6)} (\cdot -2) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = 3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3x + 3y = -3) \xrightarrow{(-2x - 4y = -6)} (-2x + 3$

The solution to this set of simultaneous equations, then, is (-3, 3)

16) Solve for (x, y): $\begin{cases} 2x - 3(y+1) = 8\\ 3(x+2) + 5y = -6 \end{cases}$

Let's put both of these equations in standard linear form.

2x - 3(y + 1) = 8 2x - 3y - 3 = 8 2x - 3y = 11 3(x + 2) + 5y = -6 3x + 6 + 5y = -63x + 5y = -12

Then, use the above technique to solve resulting equations.

$$2x - 3y = 11 \longrightarrow (\cdot -3) \longrightarrow -6x + 9y = -33$$

$$3x + 5y = -12 \longrightarrow (\cdot 2) \longrightarrow + 6x + 10y = -24$$

$$19y = -57$$

$$y = -3$$

$$2x - 3(-3) = 11$$

$$2x + 9 = 11$$

$$2x = 2$$

$$x = 1$$

The solution to this set of simultaneous equations, then, is (1, -3)

For #17 - 20 simplify each expression completely.

17)
$$\sqrt{24x^3y^8} = \sqrt{24} \cdot \sqrt{x^3} \cdot \sqrt{y^8}$$

 $= \sqrt{4} \cdot \sqrt{6} \cdot x\sqrt{x} \cdot y^4$
 $= 2\sqrt{6} \cdot x\sqrt{x} \cdot y^4$
 $= 2xy^4\sqrt{6x}$

18) $(5\sqrt{2})^2$

$$(5\sqrt{2})^2 = 5^2 \cdot (\sqrt{2})^2 = 25 \cdot 2 = 50$$

Alternatively,

$$(5\sqrt{2}) \cdot (5\sqrt{2}) = 5 \cdot 5 \cdot \sqrt{2} \cdot \sqrt{2} = 25 \cdot 2 = 50$$

19)
$$(-2\sqrt{12})(5\sqrt{3})$$

 $(-2\sqrt{12}) \cdot (5\sqrt{3}) = -2 \cdot 5 \cdot \sqrt{12} \cdot \sqrt{3} = -10 \cdot \sqrt{36} = -10 \cdot 6 = -60$

$$20) \frac{\sqrt{18}}{\sqrt{15}}$$
$$\frac{\sqrt{18}}{\sqrt{15}} = \frac{\sqrt{18}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} = \frac{\sqrt{18} \cdot \sqrt{15}}{15}$$
$$= \frac{\sqrt{3} \cdot \sqrt{6} \cdot \sqrt{3} \cdot \sqrt{5}}{15} = \frac{(\sqrt{3} \cdot \sqrt{3}) \cdot (\sqrt{6} \cdot \sqrt{5})}{15} = \frac{3 \cdot \sqrt{30}}{15} = \frac{\sqrt{30}}{5}$$

21) Use the Pythagorean Theorem $(a^2 + b^2 = c^2)$ to solve for the missing hypotenuse in the right triangle shown.

When using the Pythagorean Theorem, a and b refer to the lengths of the legs, and c refers to the length of the hypotenuse.

$$a^{2} + b^{2} = c^{2}$$

$$2^{2} + 4^{2} = c^{2}$$

$$4 + 16 = c^{2}$$

$$20 = c^{2}$$

$$\sqrt{20} = \sqrt{c^{2}}$$

$$\sqrt{20} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5} = c$$

