1) Solve: $5-3(2 x-1)=6-2 x$

Start:	$5-3(2 x-1)=6-2 x$
Distribute:	$5-6 x+3=6-2 x$
Collect terms:	$8-6 x=6-2 x$
Add $6 x:$	$8=6+4 x$
Subtract 6:	$2=4 x$
Divide by 4:	$\frac{1}{2}=x$

2) Solve: $2 x+5(x-7) \geq 3 x+4$

Start: $\quad 2 x+5(x-7) \geq 3 x+4$
Distribute: $\quad 2 x+5 x-35 \geq 3 x+4$
Collect terms: $\quad 7 x-35 \geq 3 x+4$
Subtract $3 x: \quad 4 x-35 \geq 4$
Add 35: $\quad 4 x \geq 39$
Divide by $4: \quad x \geq \frac{39}{4}$
3) Factor: $x^{2}+5 x-24$

To factor a trinomial with a lead coefficient of 1, consider the following (see p. 68 in the Algebra Handbook available on www.mathguy.us).

For this problem, $p+q=5$, and $p \cdot q=-24$. Thinking about possibilities we conclude that p and q must be -3 and 8 . Notice that the sign of the middle term goes with the larger of p and q.

Then, $x^{2}+5 x-24=(x-3)(x+8)$
4) Factor: $a^{2}-7 a+10$

For this problem, $p+q=-7$, and $p \cdot q=10$.
p and q must both be negative because the coefficient of a in the original expression is negative, but the constant term is positive.
Thinking about possibilities we conclude that p and q must be -2 and -5 . Then,

$$
a^{2}-7 a+10=(a-2)(a-5)
$$

5) Factor: $5 x^{2}-6 x+1$

To factor a trinomial with a lead coefficient other than 1, consider the steps shown on p. 69 in the Algebra Handbook. The AC Method works allows you to focus on a singular solution.

Alternatively, the factored form must be: $(m x+p)(n x+q)$. So, $(m \cdot n)$ is the coefficient of x^{2} and $(p \cdot q)$ is the constant term. If there are not many possibilities for m, n, p, q, we can try various combinations of them to see if the correct coefficient of the x term results when multiplying $(m x+p)(n x+q)$.

For this problem, $m \cdot n=5$ and $p \cdot q=1$.
Thinking through the possibilities with $5 x^{2}-6 x+1$, we settle on:

$$
5 x^{2}-6 x+1=(5 x-1)(x-1)
$$

6) Factor: $6 x^{2}+7 x-3$

The lead coefficient is not 1 , so let's use the AC Method with this problem. Note that the name of the method reflects the multiplication of a and c of $a x^{2}+b x+c$ in the process:

Now, we want values that multiply to -18 , and add to 7 .
Thinking through the possibilities, we come up with 9 and -2 . These become the coefficients of two middle terms that replace $+7 x$.

$$
6 x^{2}+7 x-3=6 x^{2}+9 x-2 x-3
$$

Next, group terms in pairs. Be careful to distribute the negative in the second pair:

$$
\left(6 x^{2}+9 x\right)-(2 x+3)
$$

Factor each pair of terms separately and collect terms.

$$
\begin{aligned}
\left(6 x^{2}+9 x\right)-(2 x+3) & =3 x(2 x+3)-1(2 x+3) \\
& =(3 x-\mathbf{1})(\mathbf{2 x}+\mathbf{3})
\end{aligned}
$$

7) Factor: $4 x^{2}-6 x-40$

First, factor out the greatest common factor: $4 x^{2}-6 x-40=2\left(2 x^{2}-3 x-20\right)$
The lead coefficient of the remaining trinomial is not 1 , so let's use the AC Method with this problem.

Now, we want values that multiply to -40 , and add to -3 .
Thinking through the possibilities, we come up with -8 and 5 . These become the coefficients of two middle terms that replace $-3 x$.

$$
2\left(2 x^{2}-3 x-20\right)=2\left(2 x^{2}-8 x+5 x-20\right)
$$

Next, group terms in pairs:

$$
2\left[\left(2 x^{2}-8 x\right)+(5 x-20)\right]
$$

Factor each pair of terms separately and collect terms.

$$
\begin{aligned}
2\left[\left(2 x^{2}-8 x\right)+(5 x-20)\right] & =2[2 x(x-4)+5(x-4)] \\
& =2(2 x+5)(x-4)
\end{aligned}
$$

8) Multiply: $(x-4)^{2}$
$(x-4)^{2}=(x-4)(x-4)$
First: $\quad x \cdot x=x^{2}$
Outside: $x \cdot(-4)=-4 x$
Inside: $(-4) \cdot x=-4 x$
Last: $\quad(-4) \cdot(-4)=16$
Now, add the resulting terms: $x^{2}-4 x-4 x+16=x^{2}-8 x+16$
9) Multiply: $(7 x+2)^{2}$
$(7 x+2)^{2}=(7 x+2)(7 x+2)$
First: $\quad 7 x \cdot 7 x=49 x^{2}$
Outside: $7 x \cdot(2)=14 x$
Inside: (2) $\cdot 7 x=14 x$
Last: $\quad(2) \cdot(2)=4$
Now, add the resulting terms: $49 x^{2}+14 x+14 x+4=49 x^{2}+28 x+4$
10) Solve by factoring: $2 x^{2}+3 x-35=0$

The lead coefficient is not 1 , so let's use the AC Method with this problem.

Now, we want values that multiply to -70 , and add to 3 .
Thinking through the possibilities, we come up with 10 and -7 . These become the coefficients of two middle terms that replace $+3 x$.

$$
2 x^{2}+3 x-35=2 x^{2}+10 x-7 x-35
$$

Next, group terms in pairs. Be careful to distribute the negative in the second pair:

$$
\left(2 x^{2}+10 x\right)-(7 x+35)
$$

Factor each pair of terms separately and collect terms.

$$
\begin{aligned}
\left(2 x^{2}+10 x\right)-(7 x+35) & =2 x(x+5)-7(x+5) \\
& =(2 x-7)(x+5)
\end{aligned}
$$

Finally, set each term equal to zero.

$$
\begin{array}{ll}
2 x-7=0 & x+5=0 \\
2 x=7 & x=-5 \\
x=\frac{7}{2} &
\end{array}
$$

11) Solve by factoring: $x^{2}-28=-3 x$

First, get all terms on one side (preferably with a positive lead coefficient).

$$
\begin{aligned}
& x^{2}-28=-3 x \\
& x^{2}+3 x-28=0 \\
& (x+7)(x-4)=0
\end{aligned}
$$

Finally, set each term equal to zero.

$$
\begin{array}{ll}
x+7=0 & x-4=0 \\
x=-7 & x=4
\end{array}
$$

12) Solve: $5 x^{2}-2 x-1=0$
(what if it doesn't factor; how can we solve a quadratic?)
Use the quadratic formula if the quadratic function is in the form $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In this problem, $a=5, b=-2, c=-1$

$$
\begin{aligned}
x=\frac{2 \pm \sqrt{(-2)^{2}-4(-1)(5)}}{2(5)} & =\frac{2 \pm \sqrt{4+20}}{10}=\frac{2 \pm \sqrt{24}}{10}=\frac{2 \pm \sqrt{4} \cdot \sqrt{6}}{10}=\frac{2 \pm 2 \sqrt{6}}{10} \\
& =\frac{2(1 \pm \sqrt{6})}{2 \cdot 5}=\frac{1 \pm \sqrt{6}}{5}
\end{aligned}
$$

Note: It is possible to determine if a quadratic equation can be factored by evaluating the discriminant, which we identify with the Capital Greek letter delta, " Δ ". The discriminant is the portion of the quadratic formula that is under the radical: $\Delta=b^{2}-4 a c$. Then,

- If Δ IS a perfect square (i.e., $0,1,4,9,16,25, \ldots$), the quadratic CAN be factored.
- If Δ IS NOT a perfect square, the quadratic CANNOT be factored.

This concept will be useful to the student countless times in their mathematical career.
13) Solve for x in terms of y :

$$
3 y+2 x=-4
$$

We want to isolate x to determine what it is in terms of y.
Start: $\quad 3 y+2 x=-4$
Subtract $3 y: \quad 2 x=-3 y-4$
Divide by 2: $\quad x=-\frac{3}{2} y-2$
14) Solve for (x, y) : $\left\{\begin{array}{c}3 x-5 y=8 \\ -3 x+2 y=1\end{array}\right.$

$$
\begin{aligned}
& 3 x-5 y=8 \longrightarrow(1) \longrightarrow 3 x-5 y=8 \quad \square 3 x-5(-3)=8 \\
& -3 x+2 y=1 \longrightarrow(\cdot 1) \longrightarrow \begin{array}{r}
+-3 x+2 y=1 \\
-3 y=9
\end{array} \quad \begin{array}{l}
3 x+15=8 \\
3 x=-7
\end{array} \\
& y=-3 \quad \begin{array}{l}
3 x=-7 \\
x=-\frac{7}{3}
\end{array}
\end{aligned}
$$

The solution to this set of simultaneous equations, then, is $\left(-\frac{7}{3},-3\right)$
15) Solve for $(x, y):\left\{\begin{array}{l}x+2 y=3 \\ 2 x+3 y=3\end{array}\right.$

$$
\begin{aligned}
x+2 y=3 \\
2 x+3 y=3
\end{aligned} \longrightarrow(-2) \longrightarrow \begin{aligned}
(-2 x-4 y & =-6 \\
+2 x+3 y & =3 \\
-y & =-3 \\
y & =3
\end{aligned} \quad \begin{array}{r}
-2 x+3(3)=3 \\
2 x+9=3 \\
2 x=-6 \\
x=-3
\end{array}
$$

The solution to this set of simultaneous equations, then, is $(-3,3)$
16) Solve for $(x, y):\left\{\begin{array}{c}2 x-3(y+1)=8 \\ 3(x+2)+5 y=-6\end{array}\right.$

Let's put both of these equations in standard linear form.

$$
\begin{array}{ll}
2 x-3(y+1)=8 & 3(x+2)+5 y=-6 \\
2 x-3 y-3=8 & 3 x+6+5 y=-6 \\
2 x-3 y=11 & 3 x+5 y=-12
\end{array}
$$

Then, use the above technique to solve resulting equations.

$$
\begin{aligned}
& 2 x-3 y=11 \longrightarrow(\cdot-3) \longrightarrow-6 x+9 y=-33 \quad \square \quad 2 x-3(-3)=11 \\
& 3 x+5 y=-12 \longrightarrow(\cdot 2) \longrightarrow+6 x+10 y=-24 \\
& y=-3-x=1
\end{aligned}
$$

The solution to this set of simultaneous equations, then, is $(\mathbf{1}, \mathbf{- 3})$

For \#17-20 simplify each expression completely.

17) $\sqrt{24 x^{3} y^{8}}$

$$
\begin{aligned}
\sqrt{24 x^{3} y^{8}} & =\sqrt{24} \cdot \sqrt{x^{3}} \cdot \sqrt{y^{8}} \\
& =\sqrt{4} \cdot \sqrt{6} \cdot x \sqrt{x} \cdot y^{4} \\
& =2 \sqrt{6} \cdot x \sqrt{x} \cdot y^{4} \\
& =2 x y^{4} \sqrt{6 x}
\end{aligned}
$$

18) $(5 \sqrt{2})^{2}$

$$
(5 \sqrt{2})^{2}=5^{2} \cdot(\sqrt{2})^{2}=25 \cdot 2=\mathbf{5 0}
$$

Alternatively,

$$
(5 \sqrt{2}) \cdot(5 \sqrt{2})=5 \cdot 5 \cdot \sqrt{2} \cdot \sqrt{2}=25 \cdot 2=50
$$

19) $(-2 \sqrt{12})(5 \sqrt{3})$

$$
(-2 \sqrt{12}) \cdot(5 \sqrt{3})=-2 \cdot 5 \cdot \sqrt{12} \cdot \sqrt{3}=-10 \cdot \sqrt{36}=-10 \cdot 6=-60
$$

20) $\frac{\sqrt{18}}{\sqrt{15}}$

$$
\begin{aligned}
\frac{\sqrt{18}}{\sqrt{15}} & =\frac{\sqrt{18}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}}=\frac{\sqrt{18} \cdot \sqrt{15}}{15} \\
& =\frac{\sqrt{3} \cdot \sqrt{6} \cdot \sqrt{3} \cdot \sqrt{5}}{15}=\frac{(\sqrt{3} \cdot \sqrt{3}) \cdot(\sqrt{6} \cdot \sqrt{5})}{15}=\frac{3 \cdot \sqrt{30}}{15}=\frac{\sqrt{30}}{5}
\end{aligned}
$$

21) Use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to solve for the missing hypotenuse in the right triangle shown.

When using the Pythagorean Theorem, a and b refer to the lengths of the legs, and c refers to the length of the hypotenuse.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 2^{2}+4^{2}=c^{2} \\
& 4+16=c^{2} \\
& 20=c^{2} \\
& \sqrt{20}=\sqrt{c^{2}} \\
& \sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}=c
\end{aligned}
$$

